Abstract

Amycolatopsis tucumanensis, a recently recognized novel species showed remarkable copper resistance as well as efficient Specific Cupric Reductase Activity (SRACu) in both, copper adapted and non-adapted cells, under different temperatures of incubation. Its copper resistance strength was highlighted against other metal-resistant actinobacteria (Streptomyces sp. AB5A) and sensitive strains (Amycolatopsis eurytherma and Streptomyces coelicolor). Pre-adapted cells of A. tucumanensis displayed values of SRACu, on average, 65% higher than those obtained from non-adapted cells. In addition, preadaptation of A. tucumanensis improved the rate of Cu(II) reduction which was approximately, two-, seven- and ninefold higher than pre-adapted cells from Streptomyces sp. AB5A, A. eurytherma and S. coelicolor, respectively. A. tucumanensis showed the highest levels of SRACu at all temperatures and also the highest copper resistance profile, suggesting that these two abilities may be in close relationship. This ostensible versatility, related to the temperature, of adapted cells from A. tucumanensis might support the application of this strain under different bioremediation conditions. To our knowledge this is the first time that cupric reductase activity was demonstrated within the genus Amycolatopsis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.