Abstract

The location of Cu(II) and its interaction with deuterated adsorbates in Cu(II)-exchanged gallosilicate with the offretite channel-type structure were investigated by electron spin resonance (ESR) and electron spin echo modulation (ESEM) spectroscopies. It is suggested that in fresh, hydrated offretite gallosilicate Cu(II) is in the main channel coordinated to three water molecules and three framework oxygens in a six-ring window of an e-cage to form distorted octahedral coordination. Upon evacuation at increasing temperature, Cu(II) moves from the main channel through an e-cage to a hexagonal prism. Dehydration at 400 °C produces one Cu(II) species located in a recessed site in a hexagonal prism based on a lack of broadening of its ESR lines by oxygen. Adsorption of polar molecules such as water, alcohols, dimethyl sulfoxide, and ammonia causes changes in the ESR spectrum of the Cu(II), indicating migration into cation positions in the main channels where adsorbate coordination can occur. However, nonpol...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.