Abstract

The Cornell University Portable Radar Interferometer (CUPRI) observed two extremely strong layers of Polar Mesosphere Summer Mesosphere (PMSE) thirty minutes prior to the launch of Salvo C of the NLC‐91 campaign. The lower layer exhibited a S/N ratio of 42 dB (the second strongest event of NLC‐91), vertical velocities of a few m/s, and a narrow spectral width, suggesting that it was the result of partial reflections. The upper layer, in contrast, exhibited sinusoidal structures in vertical velocity with peak amplitudes greater than ± 10 m/s and wide spectral widths. These structures were observed to grow and steepen with altitude until they broke and produced turbulent radar scattering. We conclude that the rapid rate of growth of the wave with altitude was the result of a depressed mesopause temperature and a nearly adiabatic temperature gradient at PMSE heights and that the simultaneous measurement of both a low mesopause temperature and strong PMSE supports recent theories that find the presence of charged aerosols to be the key to the unique radar cross sections associated with PMSE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.