Abstract

CUPID is a next-generation tonne-scale bolometric neutrinoless double beta decay experiment that will probe the Majorana nature of neutrinos and discover lepton number violation in case of observation of this singular process. CUPID will be built on experience, expertise and lessons learned in CUORE and will be installed in the current CUORE infra-structure in the Gran Sasso underground laboratory. The CUPID detector technology, successfully tested in the CUPID-Mo experiment, is based on scintillating bolometers of Li $$_2$$ MoO $$_4$$ enriched in the isotope of interest $$^{100}$$ Mo. In order to achieve its ambitious science goals, the CUPID collaboration aims to reduce the backgrounds in the region of interest by a factor 100 with respect to CUORE. This performance will be achieved by introducing the high efficient $$\alpha$$ / $$\beta$$ discrimination demonstrated by the CUPID-0 and CUPID-Mo experiments, and using a high transition energy double beta decay nucleus such as $$^{100}$$ Mo to minimize the impact of the gamma background. CUPID will consist of about 1500 hybrid heat-light detectors for a total isotope mass of 250 kg. The CUPID scientific reach is supported by a detailed and safe background model based on CUORE, CUPID-Mo and CUPID-0 results. The required performances have already been demonstrated and will be presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.