Abstract

AbstractAn efficient CuPd nanoparticle (NP) catalyst (3 nm CuPd NPs deposited on carbon support) is designed for catalyzing electrochemical allylic alkylation in water/isopropanol (1:1 v/v) and 0.2 m KHCO3 solution at room temperature. The Pd catalysis was Pd/Cu composition‐dependent, and CuPd NPs with a Pd/Cu ratio close to one are the most efficient catalyst for the selective cross‐coupling of alkyl halides and allylic halides to form C−C hydrocarbons with product yields reaching up to 99 %. This NP‐catalyzed electrochemical allylic alkylation expands the synthetic scope of cross‐coupling reactions and can be further extended to other organic reaction systems for developing green chemistry electrosynthesis methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.