Abstract

Sintering additives for Bi3/2ZnNb3/2O7 (BZN) ceramic have been studied to facilitate use of BZN as a material for embedded decoupling capacitors in high-density multilayered low-temperature cofired ceramic (LTCC) modules for mobile communication systems and three-dimensional printing modules. Among the additives studied, a CuO/V2O5 mixture was the most promising for cofiring BZN ceramic with a commercial low-permittivity (e r) LTCC sheet (MLS-22; NEG Co., Japan) and Ag electrode. BZN codoped with 0.5 wt.% CuO/V2O5 was successfully densified at 860°C by reactive liquid-phase sintering, and the resulting dielectric properties were acceptable for use of the CuO/V2O5-codoped BZN for embedded capacitors in LTCC modules. The room-temperature permittivity (e r) of the CuO/V2O5-codoped BZN was 148 at 1 MHz, and the capacitance thermal stability was ±1.3% within the temperature range of −55°C to 125°C. The physical and chemical compatibilities of the CuO/V2O5-codoped BZN with heterogeneous layers (low-e r LTCC layer and Ag electrode layer) in LTCC modules were also examined. A cofiring test of the doped BZN ceramic with MLS-22 LTCC sheet revealed that thickness control of the two heterogeneous layers was a key factor to avoid crack formation during cofiring. The optimum thickness ratio of doped BZN to MLS-22 layers was less than 0.25:1. A chemical compatibility test revealed no severe reaction between the doped BZN/MLS-22 and doped BZN/Ag layers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call