Abstract
This work presents a novel nanocomposite layer on ZnO photoelectrodes prepared from mixed phases of copper oxide nanoparticles, CuO and Cu2O. The nanoparticles were rapidly synthesized by additive-microwave heating technique in a few minutes. Then, the nanoparticles were prepared with different concentrations of 2, 4, 6, and 8 mM followed by coating on a ZnO based layer in the DSSCs. The ZnO DSSCs with a copper oxide layer were then fabricated and measured under a solar simulator. The highest power conversion efficiency 2.31% and the highest current density 7.33 mA/cm2 were achieved at an optimum 6 mM of the nanoparticle layer. The architecture layer of the CuO-Cu2O nanoparticles led to light-harvesting enhancements in the ZnO DSSCs. This can be explained by the larger homogenous size for improving light scattering. The photovoltaic properties of the CuO-Cu2O improved a wide absorbance in the visible light region compared to a pure ZnO layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.