Abstract

In this study, a chemically modified electrode, consisting of CuO nanoparticles decorated nano-dendrite-structured CuBi2O4 (nanoCuBi2O4|CuO), was fabricated and its application as an electrocatalyst in catalyzing the oxidation of glucose was investigated. nanoCuBi2O4|CuO was fabricated by firstly electrodepositing BiOI nanosheet array (nanoBiOI) on the flourine-doped tin oxide coated glass substrate, followed by its conversion into nanoCuBi2O4|CuO via drop-casting an ethanolic Cu2+ solution and follow-up thermal treatment. The degree of conversion of nanoBiOI into nanoCuBi2O4|CuO and electrocatalytic activites of resultant nanoCuBi2O4|CuO were controlled by adjusting the dosage of the ethanolic Cu2+ precursor solution. Surface morphology, structure, crystal phase, chemical composition, and electrocatalytic properties of the nanoCuBi2O4|CuO were characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, cyclic voltammetry, linear sweep voltammetry, and chronoamperometry. It was found that both CuO and CuBi2O4 are active in electrocatalyzing the oxidation of glucose, but the porous structure of nanoCuBi2O4|CuO along with the synergistic catalytic enhancement, exerted by CuBi2O4 and CuO, renders nanoCuBi2O4|CuO superior electrocatalytic activity than CuO or CuBi2O4 alone. The mechanism of electrocatalytic oxidation of glucose on nanoCuBi2O4|CuO is proposed. Finally, the sensing characteristics of nanoCuBi2O4|CuO was evaluated, and the results indicate nanoCuBi2O4|CuO is a promising sensing material for the electrochemical detection of glucose.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.