Abstract

Global energy crisis escalates the emphasis on ways to find green and sustainable solutions. Photoelectrochemical (PEC) conversion is one of the key technologies to fulfill the energy demand by converting solar energy into chemical fuels. Binary copper oxides suffer from severe photocorrosion and ternary copper oxides such as copper bismuth oxide (CuBi2O4) exhibit poor charge separation and transfer. In this work, a composite consisting of CuO annealed at 450 °C and CBO electrodeposited for 5 min on top of it (CuO-450/CBO-5) showed the best performance with a positive shift of 0.2 V in onset potential, a high current density of −0.9 mA cm−2 at 0.1 V vs RHE and high stability over pure CuO. The systematic deposition of CBO on CuO leads to intimate contact between the two semiconductors wherein, CuO acts as a hole carrier and CBO accommodates the hydrogen evolution reaction (HER).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.