Abstract

A novel electrospinning approach is proposed for the fabrication of copper (Cu)-nanoflower decorated gold nanoparticles (AuNPs)-graphene oxide (GO) nanofiber (NF) as an electrochemical biosensor for the glucose detection. In this study, GO was mixed with poly(vinyl alcohol) (PVA) and used as a fiber precursor, which greatly improves the electrochemical properties. The above solution was uniformly coated onto the surfaces of gold chip to form GO NFs via electrospinning. AuNPs were coated onto the surface of GO NFs and then incorporated organic-inorganic hybrid nanoflower [Cu nanoflower-glucose oxidase (GOx) and horseradish peroxidase (HRP)]. The electrochemical experiments revealed that Cu-nanoflower@AuNPs-GO NFs exhibited outstanding electrochemical catalytic nature, and selectivity for the conversion of glucose to gluconic acid in the presence of GOx-HRP-Cu nanoflower. The Cu-nanoflower@AuNPs-GO NFs coated Au chip exhibited good linear range 0.001-0.1 mM, with a detection limit of 0.018 μM. The Cu-nanoflower@AuNPs-GO NFs modified Au chip exhibited higher catalytic properties, which are attributed to the coating of unique organic-inorganic nanostructured materials on the surfaces of Au chip. These results indicate that the nano-bio hybrid materials can be applied as a promising electrochemical biosensor to monitor glucose levels in biofluids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.