Abstract

Abstract Cumulus (Cu) can transport heat and water vapor from the boundary layer to the free atmosphere, leading to the redistribution of heat and moist energy in the lower atmosphere. This paper uses the fine-resolution CloudSat–CALIPSO product to characterize Cu over the Tibetan Plateau (TP). It is found that Cu is one of the dominant cloud types over the TP in the northern summer. The Cu event frequency, defined as Cu occurring within 50-km segments, is 54% over the TP in the summer, which is much larger over the TP than in its surrounding regions. The surface wind vector converging at the central TP and the topographic forcing provide the necessary moisture and dynamical lifting of convection over the TP. The structure of the atmospheric moist static energy shows that the thermodynamical environment over the northern TP can be characterized as having weak instability, a shallow layer of instability, and lower altitudes for the level of free convection. The diurnal variation of Cu with frequency peaks during the daytime confirms the surface thermodynamic control on Cu formation over the TP. This study offers insights into how surface heat is transported to the free troposphere over the TP and provides an observational test of climate models in simulating shallow convection over the TP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.