Abstract

The issue of edge determination of a single object in reconstructed nuclear medicine images has been examined thoroughly in the past, nevertheless most of the investigation has focused on the concepts of either numerical sinogram differentiation or segmentation. This work aims to develop an automated method for determining the contour of a single convex object in PET and SPECT reconstructed images, which can be used for computing body edges for attenuation correction, as well as for eliminating streak artifacts outside the specific object. This was accomplished by implementing a modified cumulative sums (CUSUM) scheme in the sinogram. Our method can automatically detect the object's boundary in the reconstructed image. This approach has been tested in simulated as well as real phantoms and it performed efficiently for all convex objects. We were able to detect the contour of a single object in the image space, which in turn enabled us to eliminate streak artifacts outside and thus to obtain body edges necessary for attenuation correction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.