Abstract

We consider a cumulative scheduling problem where a task duration and resource consumption are not fixed. The consumption profile of the task, which can vary continuously over time, is a decision variable of the problem to be determined and a task is completed as soon as the integration over its time window of a non-decreasing and continuous processing rate function of the consumption profile has reached a predefined amount of energy. The goal is to find a feasible schedule, which is an NP-hard problem. For the case where functions are concave and piecewise linear, we present two propagation algorithms. The first one is the adaptation to concave functions of the variant of the energetic reasoning previously established for linear functions. Furthermore, a full characterization of the relevant intervals for time-window adjustments is provided. The second algorithm combines a flow-based checker with time-bound adjustments derived from the time-table disjunctive reasoning for the cumulative constraint. Complementarity of the algorithms is assessed via their integration in a hybrid branch-and-bound and computational experiments on small-size instances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.