Abstract

BackgroundProgressive age-associated change in frequencies and functional capacities of immune cells is known as immunosenescence. Despite data linking chronic environmental, physiological, and psychosocial stressors with accelerated aging, how stress contributes to immunosenesence is not well characterized.ObjectiveTo help delineate the contribution of cumulative physiological stress on immunosensence we assessed relationships between a composite measurement of cumulative physiological stress, reflecting the functioning of the hypothalamic-pituitary-adrenal axis, sympathetic nervous system, cardiovascular system, and metabolic processes, and lymphocyte changes typically affiliated with aging in a cohort of healthy volunteers ranging from 18 to 66 y.ResultsPhysiological stress load positively correlated with subject age in the study cohort and was significantly higher in adults 50–66 y compared to adults 18–33 y and 34–49 y. Using physiological stress load, we identified a significant age-dependent association between stress load and frequencies of circulating regulatory T lymphocytes (Tregs). Frequencies were higher in younger participants, but only in participants exhibiting low physiological stress load. As stress load increased, frequencies of Tregs decreased in young participants but were unchanged with increasing stress load in middle and older age individuals. Follow-up analysis of stress load components indicated lower circulating DHEA-S and higher urinary norepinephrine as the primary contributors to the effects of total stress load on Tregs. In addition, we identified age-independent inverse associations between stress load and frequencies of naïve Tregs and naïve CD4 T cells and positive associations between stress load and frequencies of memory Tregs and memory CD4 T cells. These associations were primarily driven by stress load components waist circumference, systolic and diastolic blood pressure, CRP, and HbA1c. In summary, our study results suggest that, in younger people, physiological stress load may diminish regulatory T cell frequencies to levels seen in older persons. Furthermore, independent of age, stress load may contribute to contraction of the naïve Treg pool and accumulation of memory Treg cells.Clinical trialRegistered on ClincialTrials.gov (Identifier: NCT02367287).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.