Abstract

Fibre Reinforced Polymers (FRPs) are finding more applications in different industrial sectors. From a sustainability point of view, a component made of FRPs reduces energy consumption and CO2 emissions during its use-phase due to the material's lightweight nature. However, the production of these materials impacts the global energy demand significantly. To mitigate this impact, circular economy strategies are essential. This study focuses on a Cumulative Energy Demand (CED) analysis for different End-of-Life (EoL) strategies of FRPs components. Three EoL routes were evaluated: i.e., combustion, recycling and reforming of continuous fibres reinforced thermoplastics. Different fibres and matrices and three Fibre Volume Fractions (FVF) were taken into account. Specifically, Glass Fibres, Carbon Fibres, Polypropylene, and Polyether ether ketone were examined while FVF of 11%, 23% and 45% were evaluated. A Life Cycle Inventory data was built combining literature review and CES Edupack database. The results provided some guidelines for optimising the product's EoL phase in terms of CED reduction underlining the advantages and high competitiveness of the reforming strategy especially if high-performance matrices and/or fibres are processed. Recycling results to be a valuable EoL alternative if FRPs made by high-performance fibres and high FVF are employed while combustion is the more advisable option if low-performance matrices and fibres are used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.