Abstract

This study aimed to investigate the relationship between dose and radiation-induced liver disease (RILD) in patients with hepatocellular carcinoma (HCC) receiving 3-dimensional conformal radiotherapy (3DCRT). Twenty-three patients with HCC who received conventional fractionated 3DCRT, including 7 who were diagnosed with classic RILD, were enrolled in this retrospective investigation. Cone-beam computed tomography (CBCT) scans were acquired at the time of treatment for each patient. The beams from each patient's treatment plan were applied to each pretreatment CBCT (the modified CBCT or mCBCT) to construct the delivered dose distribution of the day considering inter-treatment anatomy changes. The daily doses were summed together with the help of deformable image registration (DIR) to obtain the adjusted cumulative dose (Dadjusted). The dose changes to the normal liver between the original planned dose (Dplan) and Dadjusted were evaluated by V20, V30, V40, and the mean dose to normal liver (MDTNL). Univariate analysis was performed to identify the significant dose changes. Among the 23 patients, the liver V20, V30, V40, and MDTNL showed significant differences between Dplan and Dadjusted, with average values of these parameters increased by 4.1%, 4.7%, 4.5%, and 3.9 Gy, respectively (p < 0.05). The adjusted liver dose in 21 patients (91%) was higher than the planned value. For patients without and with RILD,the MDTNL was increased on average by 3.5 Gy and 4.7 Gy, and normal tissue complication probability (NTCP) increased on average by 2.8% and 7.5%, respectively. Our study found that the adjusted cumulative dose based on calculations using pretreatment mCBCT differs significantly from planned dose; the use of the dosimetric results of the initial plan was found to be less predictive of RILD as compared with Dadjusted. Determination of a reconstructed Dadjusted using the mCBCT scans are more accurate in predicting RILD and has the potential to reduce the risk of RILD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.