Abstract

This study investigated deformation behavior of structural steel subjected to large strain. When structures experience powerful earthquakes, strain amplitudes at the fracture locations can be quite large, and the material fractures after few loading cycles. The Manson-Coffin relationship is commonly used to predict failure of metals subjected to cyclic loadings. However, the traditional Manson–Coffin relationship does not necessarily hold for some materials under extremely large strain amplitude. There are few relevant experiments, largely because it is difficult to reproduce structural steel behavior under large amplitude cyclic stains in the laboratory due to buckling. In this study, 71 steel plate specimens of structural steel were loaded until fracture under diverse cyclic axial strain loadings and monotonic tension. The relationship between cumulative strain and its skeleton portion was obtained based on the analysis of the hysteresis loops. Due to the limitation of test setup, the largest compression strain amplitude is 6%, which is still not sufficient to study the material behavior of structural steel under severe earthquakes. Therefore, numerical simulations of single steel elements subjected to cyclic strain were conducted to complement the material behavior under extremely large constant strain amplitudes. The cumulative deformation capacity of structural steel subjected to extremely large strain amplitudes was evaluated through a strain-life curve with the experimental and analytical results. In the final part of this study, experimental results from former research were introduced to validate the proposed strain-life curve.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call