Abstract

Abstract Objectives The aim of this study was to provide a comprehensive understanding of the nonthermal plasma (NTP)-induced inactivated behaviors on a multiple antibiotic–resistant (MAR) Staphylococcus aureus (S. aureus). Materials and Methods A dielectric barrier discharge (DBD) NTP system was employed for the inactivation of a MAR S. aureus under various applied powers of 35, 45, and 55 W, and gas distances of 4, 6, and 8 mm. The inactivation kinetics of S. aureus were estimated with linear and nonlinear predictive models. In addition, degradation of carotenoid pigment, peroxidation of fatty acids, oxidation of nucleic acids and proteins, and alteration in gene expression were analyzed after NTP treatment. Results and Discussion The computationally simulated results indicated that the densities of various reactive species increased with enhanced applied powers and decreased discharge distances. These species were further transformed into reactive oxidative and nitrogen species in the gas–liquid interphase and liquid phase. The oxidative and nitrosative stress of NTP resulted in severe damage to cellular components and the morphological structure of S. aureus. On the other hand, the plasma reactive species could also induce the sublethal injury of S. aureus through upregulating the general stress response, antioxidative and antinitrosative defensive systems. Once the cumulative damages overrode the stress tolerance of S. aureus, the completed cell death was finally achieved by NTP. Conclusions This work infers the possible risk of inducing the repair and resistant capacity of pathogens when the applied NTP parameters are inappropriate, which helps the optimization of NTP process to achieve sufficient inactivation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.