Abstract

A recently developed technique to estimate effectiveness factor in catalytic pellets [J.C. Gottifredi, E.E. Gonzo, On the effectiveness factor calculation for a reaction-diffusion process in an immobilized biocatalyst pellet, Biochem. Eng. J. 24 (2005) 235–242] is used to greatly simplify the simulation of membrane biocatalyst reactors. The whole problem is reduced to well-known plug flow packed bed reactor after an appropriate definition of an effectiveness factor (η) that takes into account chemical consumption in the catalytic region and mass transfer resistances of the reactive component. A standard R–K routine can then be applied since, at each mesh point, η is calculated through a non-linear algebraic equation.Results produced with this procedure compare fairly well with previous findings. Moreover some experimental results of kinetics studies related with enzyme immobilization are used to simulate membrane hollow fiber reactors and conversion, concentrations and η profiles along reactor axial position.The procedure can be applied to any biocatalytic system provided a single chemical reaction takes place although the kinetic expression can be arbitrary.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.