Abstract

A series of intertypic (type 3/type 1) poliovirus recombinants was obtained whose crossover sites were expected to be located in the middle of the viral genome, between the loci encoding type-specific antigenic properties, on the 5′ side, and an altered sensitivity to guanidine, on the 3′ side. The primary structures of the crossover regions in the genomes of these recombinants were determined by the primer extension method. The length of the crossover sites (the uninterrupted sequences shared by the recombinant and both parental genomes that are flanked, in the recombinant RNAs, by two heterotypic segments) varied between 2 and 32 nucleotides, but the majority of the sites were 5 nucleotides long or shorter. The crossover sites were nonrandomly distributed over the presumably available genome region: only a single such site was found within the gene for polypeptide 2A, whereas an apparent clustering of the crossover sites was encountered in other genomic segments. When the crossover sites were superimposed on a model of the secondary structure of the relevant region of the viral RNA molecule, a pattern consistent with the previously proposed mechanism of poliovirus recombination (L. I. Romanova, V. M. Blinov, E. A. Tolskaya, E. G. Viktorova, M. S. Kolesnikova, E. I. Guseva, and V. I. Agol (1986) Virology 155, 202–213) was observed. It is suggested that the nonrandom distribution of the crossover sites in the genomes of intertypic poliovirus recombinants was due to two factors: the existence of preferred sites for recombination, and selection against recombinants with a lowered level of viability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.