Abstract

The results of an experimental investigation of the effect of cumulation of a beam of runaway electrons formed in a high-voltage nanosecond discharge at a reduced air pressure are presented. The optimal conditions of this effect in a discharge gap in a tubular cathode – grounded planar anode geometry were achieved at an air pressure of ≈5 Pa and an interelectrode gap of 2.75 mm. An electron-beam current pulse is recorded with a high time resolution (up to about 80 ps) behind the flat foil anode. It is found out that due to this effect a through hole is formed in a 20 μm-thick aluminum foil after 2–3 discharge pulses. The results obtained suggest that the electron energy in the second part of the beam current pulse is lower than that in its first part.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.