Abstract
Mineralogic study of black inclusions in the Cumberland Falls enstatite achondrite revealed that they constitute a highly unequilibrated chondritic suite distinct from other chondrite groups. This highly shocked suite, the forsterite (F) chondrites, exhibits mineralogic trends apparently produced during primary nebular condensation and accretion over a broad redox range. We analyzed these samples and possibly related meteorites for Ag, As, Au, Bi, Cd, Co, Cs, Ga, In, Rb, Sb, Se, Te, Tl, U and Zn, trace elements known to yield important genetic information. The results demonstrate the compositional coherence and distinctiveness of the F chondrite suite relative to other chondrites. The Antarctic aubrite, ALH A78113, may include more F chondrite material. Trace element contents do not vary with mineral compositions hence do not reflect redox variations during formation of F chondrite parental matter. Trace element mobilization—during secondary heating episodes in the F chondrite parent or during its disruptive collision with the enstatite meteorite parent body—is not detectable. Chemical trends in F chondrites apparently reflect primary nebular processes. Cosmochemical fractionation of lithophiles from siderophiles and chalcophiles occurred at moderately high temperatures, certainly higher than those existing during formation of primitive carbonaceous, enstatite and ordinary chondrites of petrologic type ≤3.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.