Abstract

Testing drugs in vivo and in vitro have been essential elements for the discovery of new therapeutics. Due to the recent advances in in vitro cell culture models, such as human-induced pluripotent stem cell-derived cardiomyocytes and 3D multicell type organoid culture methods, the detection of adverse cardiac events prior to human clinical trials has improved. However, there are still numerous therapeutics whose adverse cardiac effects are not detected until human trials due to the inability of these cell cultures to fully model the complex multicellular organization of an intact human myocardium. Cardiac tissue slices are a possible alternative solution. Myocardial slices are a 300-micron thin snapshot of the myocardium, capturing a section of the adult heart in a 1×1cm section. Using a culture method that incorporates essential nutrients and electrical stimulation, tissue slices can be maintained in culture for 6days with full viability and functionality. With the addition of mechanical stimulation and humoral cues, tissue slices can be cultured for 12days. Here we provide detailed methods for how to culture cardiac tissue slices under continuous mechanical stimulation in the cardiac tissue culture model (CTCM) device. The CTCM incorporates four essential factors for maintaining tissue slices in culture for 12days: mechanical stimulation, electrical stimulation, nutrients, and humoral cues. The CTCM can also be used to model disease conditions, such as overstretch-induced cardiac hypertrophy. The versatility of the CTCM illustrates its potential to be a medium-throughput screening platform for personalized drug testing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.