Abstract

Toll-like receptors (TLRs) recognize pathogen-associated molecular patterns (PAMPs), which have been evolutionarily conserved in microbes. Human melanocytes are not simply pigment-producing cells but also have the phagocytic capacity and can produce pro-inflammatory mediators. However, the mechanisms of recognition of microbes by melanocytes have not yet been fully established. We investigated the TLRs 1-10 expression profile in human epidermal melanocytes and assessed their functions after triggering by their specific ligands. TLRs mRNA expression was determined by RT-PCR, and the TLR protein expression was measured by flow cytometry and immunofluorescence assays. After stimulation with various TLR ligands, the production of inflammatory cytokine IL-8 and IL-6 was measured by ELISA and the mRNA for chemokine CCL2, CCL3 and CCL5 was analyzed by real-time PCR. Phosphorylation of IkappaBalpha in TLR ligands-triggered melanocytes was determined by Western blot and the nucleus translocation of NF-kappaBp65 was analyzed by immunofluorescence. Human melanocytes constitutively expressed TLRs 1-4, 6, 7 and 9 mRNA. Ample amounts of TLRs 2-4, 7 and 9 were confirmed at protein level. Stimulation of melanocytes with TLRs ligands resulted in the release of cytokines (IL-8 and IL-6) and the mRNA accumulation of chemokines (CCL2, CCL3 and CCL5). Triggering of TLRs in melanocytes resulted in the up-regulation of phosphorylated IkappaBalpha and in the nucleus translocation of NF-kappaBp65. Present study indicates human melanocytes express a panel of functional TLRs. The ligation of TLRs can turn these cells into active players of the skin innate immunity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.