Abstract

To investigate the ideal time in culture to optimize embryo cell-free deoxyribonucleic acid (cfDNA) analysis in frozen-thawed blastocysts undergoing noninvasive preimplantation genetic testing for aneuploidy (PGT-A). Cell-free DNA is released into the spent blastocyst media (spent media) by the embryo. However, the optimal timing to determine maximal cfDNA in the case of frozen-thawed blastocysts undergoing noninvasive PGT-A remains to be elucidated. In this prospective observational study, 135 spent media and corresponding whole blastocysts were collected from January 2021 through March2022. Private fertility clinics. Day-5 frozen-thawed blastocysts were cultured for 8 hours (Day-5 Short) or 24 hours (Day-5 Long), whereas day-6 frozen-thawed blastocysts were cultured for 8 hours (Day-6 Short). The spent media and whole blastocysts were then collected for further analysis. Spent media and whole blastocysts were amplified using whole genome amplification and sequenced using next-generation sequencing. Informativity and concordance rates between cfDNA in spent media and whole blastocyst DNA were compared according to the different times in culture. When comparing time in culture, informativity rates for spent media were significantly higher for Day-5 Long and Day-6 Short (>91%) compared with the Day-5 Short group (<60%). A similar trend was observed for cases with and without a previous PGT-A. Regarding blastocyst expansion grade, informativity rates were lower on Day-5 Short compared with Day-5 Long and Day-6 Short, regardless of expansion degree. This decrease was significant for Gardner-grade expansion grades 3, 4, and 5-6. In addition, for a similar time in culture, the grade of expansion did not have an impact on the informativity rates. For concordance rates, no significant differences were observed among the 3 groups. In all cases, concordance rates were 90.5% for Day-5 Short, 93.6% for Day-5 Long, and 92.3% for Day-6 Short. No impact of the expansion grade was observed on concordance rates. Noninvasive PGT-A in frozen-thawed blastocysts yields very high concordance rates with whole blastocysts, possibly limiting the need for invasive PGT-A and making it available for a wider range of patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call