Abstract

In submerged culture of Ganoderma lucidum, the pH optimum for cell growth has been shown to be lower than that for exopolysaccharides (EPS) formation. Therefore, in the present study, a two-stage pH-control strategy was employed to maximize the productions of mycelial biomass and EPS. When compared, a batch culture without pH control had a maximum concentration of EPS and endopolysaccharides, which was much lower than those with pH control. Maximum mycelial growth (12.5 g/L) and EPS production (4.7 g/L) were achieved by shifting the controlled pH from 3.0 to 6.0 after day 4. The contrast between the controlled-pH process and uncontrolled pH was marked. By using various two-stage culture processes, it was also observed that culture pH has a significant affect on the yield of product, mycelial morphology, chemical composition, and molecular weight of EPS. A detailed observation of mycelial morphology revealed that the productive morphological form for EPS production was a dispersed pellet (controlled pH shifting from 3.0 to 6.0) rather than a compact pellet with a dense core area (controlled pH 4.5) or a feather-like pellet (controlled pH shifting from 6.0 to 3.0). Three different polysaccharides were obtained from each pH conditions, and their molecular weights and chemical compositions were significantly different.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.