Abstract

Mesenchymal stem cells derived from the synovial membrane (MSCSM) have a greater potential for joint regeneration, besides the capacity for chondrogenic differentiation, since they are a source closer to the chondrocytes. This study aimed to cultivate and evaluate viability and differentiation of MSCSM encapsulated in a three-dimensional alginate hydrogel (HA) scaffold. Samples of the synovial membrane of the metatarsophalangeal joint of 4 horses were collected by astroscopic surgery. These were subjected to enzymatic digestion, isolated mesenchymal cells, cultured in monolayers and encapsulated at various concentrations, 104; 204; 504; 105; 205 cells in 1.5% sodium alginate solution. The gelatinization process was carried out and cultured for 4 weeks. Viability and cell proliferation were performed by dissolving the microcapsules and counting with trypan blue. The ratio of live cells and total live cells at intervals 0, 7, 14, 21 and 28 days was analyzed. For the evaluation of differentiation, histological sections stained with hematoxylin and eosin and toluidine blue were performed. There was no statistical difference in the proportion of live cells between groups over the 28 days. The group of 105 cells obtained a higher total number of living cells at the end of the experiment. Through the histological analysis it was possible to observe at 7 days a low amount of spherical cells with chondrocyte characteristics. On day 21, chondrogenic differentiation became evident, with pericellular and territorial matrix production. This study demonstrated the efficiency of HA as a scaffold for MSCSM and the chondrogenic differentiation, promising for use in the treatment of joint injuries in horses.

Highlights

  • Mesenchymal stem cells derived from the synovial membrane (MSCSM) have a greater potential for joint regeneration, besides the capacity for chondrogenic differentiation, since they are a source closer to the chondrocytes

  • Considering the above, the objective of this work was to cultivate MSCSM encapsulated in alginate hydrogel in different concentrations, comparing the viability, proliferation and chondrogenic differentiation, for posterior use in implants aiming the regeneration of the articular cartilage of horses

  • Synovial membrane (SM) collection and culture The synovial membranes were collected from arthroscopies performed in horses attended by the Department of Large Animals Surgery of the State University Julio de Mesquita Filho (UNESP), Campus Botucatu / SP, from April to September, 2016, obtaining it with the written consent of the owner to use the animal in its study

Read more

Summary

Introduction

Mesenchymal stem cells derived from the synovial membrane (MSCSM) have a greater potential for joint regeneration, besides the capacity for chondrogenic differentiation, since they are a source closer to the chondrocytes. Samples of the synovial membrane of the metatarsophalangeal joint of 4 horses were collected by astroscopic surgery. These were subjected to enzymatic digestion, isolated mesenchymal cells, cultured in monolayers and encapsulated at various concentrations, 104; 204; 504; 105; 205 cells in 1.5% sodium alginate solution. The biological and mechanical properties of the repair tissue formed are inferior to those of native articular cartilage. The difficulty arises because the articular cartilage has limited capacity for self-regeneration [3, 4]. Lymphatic system have been shown to be associated with a reduced amount of blood progenitor cells, limiting the regenerative mechanism [5, 6]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call