Abstract

As part of an ongoing program of research using the testis of the dogfish shark (Squalus acanthias) to characterize morphologic and functional changes during spermatogenesis, we have developed procedures for culturing intact spermatocysts (germ cell/Sertoli cell clones) and isolated Sertoli cells from premeiotic, meiotic, and postmeiotic stages of development. Phase contrast and light microscopy confirmed the stage and cellular composition of spermatocysts and showed that they retained their closed, spherical configuration for at least 15 d in culture. Stage-related variations in [3H]thymidine incorporation (premeiotic much greater than meiotic = postmeiotic) were observed, a pattern that was the same quantitatively and qualitatively after one or seven days of culture. [3H]Leucine-labeled protein synthesis was twofold greater in cultures with premeiotic spermatocysts than in cultures with more mature stages, whether medium or cysts were analyzed. Sertoli cells isolated from spermatocysts of different stages differed in size, shape, cytological appearance, ability to form flattened monolayers, and rate of DNA synthesis. One day after seeding, [3H]thymidine labeling of Sertoli cells corresponded to the pattern obtained with intact spermatocysts (premeiotic much greater than meiotic = postmeiotic); however, 7 days in culture effected a 40- to 200-fold increase in this parameter and altered the stage-dependent pattern (premeiotic = meiotic greater than postmeiotic). Also, when [3H]leucine-labeled macromolecules secreted by Sertoli cells from premeiotic versus meiotic stages were analyzed by polyacrylamide gel electrophoresis (PAGE), banding patterns differed. Initial results demonstrate the feasibility and potential of this in vitro system for studying qualitative and quantitative changes during spermatogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call