Abstract

Field observations indicated that a strain ofBoophilus microplus(Can.) in the Rockhampton area in Queensland was resistant to an organophosphorus insecticide, dioxathion (applied as Delnav), which had previously controlled it successfully. Ticks of this strain were despatched to the Cooper Technical Bureau in England, where a culture was established and maintained under selective pressure from dioxathion.The non-parasitic stages of the culture were maintained in an incubator under controlled conditions, and the parasitic stages on cattle in a tick rearing house designed for the purpose. Careful security precautions were taken to ensure that there was no dissemination of tick life outside the confines of the culture. The tick rearing house was provided with double doors, the inner ones of which were screened with copper gauze to prevent the possible transmission of anaplasmosis by biting flies.The activities of 23 insecticides against larvae of this strain and larvae of a strain ofB. microplussusceptible to organophosphorus poisoning were compared. The test method was an immersion technique, usually employing the insecticide in the form of an emulsion. Mortality was assessed 17 hours after treatment. These comparisons indicated that the strain was resistant to the organophosphorus insecticides carbophenothion (62 ×), dioxathion (25 ×), diazinon (15 ×), parathion (10×) and a carbamate, carbaryl (38×). It is suggested that these resistances may be due to a specific mechanism effective against these compounds.Nine other organophosphorus insecticides, one carbamate and rotenone were subject to low-order resistance by this strain significant at P ≤0·05. This was considered to be non-specific resistance.Dioxathion had been in use for tick control on the property concerned for four years before resistance was demonstrated. The property is situated in an area where the tick season lasts for ten months. In other parts of the world, dioxathion has been in use againstBoophilusticks for seven years without the development of resistance to it. The length of time resistance has taken to develop suggests that the resistance mechanism is not the expression of a single dominant gene, as has been demonstrated for dieldrin-resistance.The results suggest that resistance to one or more organophosphorus insecticides will not necessarily prevent the use of other members of this wide and diverse group for tick control. Several of the insecticides shown here to be subject to low-order non-specific resistance are known to be effective tick dips, and one of them, ethion, has been used with success against the resistant strain.An interesting corollary of the results was that the organophosphorus thions showed greater activity than their corresponding oxons against the susceptible strain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call