Abstract
The lining of the gut epithelium is made up of a simple layer of specialized epithelial cells that expose their apical side to the lumen and respond to external cues. Recent optimization of in vitro culture conditions allows for the re-creation of the intestinal stem cell niche and the development of advanced 3-dimensional (3D) culture systems that recapitulate the cell composition and the organization of the epithelium. Intestinal organoids embedded in an extracellular matrix (ECM) can be maintained for long-term and self-organize to generate a well-defined, polarized epithelium that encompasses an internal lumen and an external exposed basal side. This restrictive nature of the intestinal organoids presents challenges in accessing the apical surface of the epithelium in vitro and limits the investigation of biological mechanisms such as nutrient uptake and host-microbiota/host-pathogen interactions. Here, we describe two methods that facilitate access to the apical side of the organoid epithelium and support the differentiation of specific intestinal cell types. First, we show how ECM removal induces an inversion of the epithelial cell polarity and allows for the generation of apical-out 3D organoids. Second, we describe how to generate 2-dimensional (2D) monolayers from single cell suspensions derived from intestinal organoids, comprised of mature and differentiated cell types. These techniques provide novel tools to study apical-specific interactions of the epithelium with external cues in vitro and promote the use of organoids as a platform to facilitate precision medicine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.