Abstract
Enterohemorrhagic Escherichia coli (EHEC) strains are foodborne pathogens carried in the intestinal tracts of ruminants and shed in the feces. High concentrations (≥104 colony-forming units [CFU]/g) of EHEC in cattle feces are associated with contamination of hides, and subsequently, carcasses and beef. Several studies using agar media have quantified O157 but few have quantified non-O157 EHEC in samples from cattle. Thus, the objective of this study was to determine the concentration of O157 and non-O157 EHEC in cattle, and to characterize the associated EHEC isolates for their virulence potential. Two hundred feedlot steers were sampled by rectoanal mucosal swab (RAMS) every 35 days over four sampling periods, and a spiral plating method using modified Possé differential agar was used to quantify EHEC organisms in these samples. Bacterial colonies from agar plates were tested by multiplex PCR for Shiga toxin and intimin genes (stx and eae, respectively), and confirmed EHEC isolates (i.e., positive for both stx and eae) were serotyped and characterized for virulence genes using a microarray. Organisms detected in this study included O26, O101, O103, O109, O121, O145, O157, and O177 EHEC, with all except O121 quantifiable and measuring within a range from 9.0 × 102 to 3.0 × 105 CFU/g of RAMS sample. Organisms of the same EHEC serogroup were not detected in quantifiable concentrations from a single animal more than once. EHEC organisms most commonly detected at quantifiable levels were O26, O157, and O177. Interestingly, O26 EHEC isolates tested negative for stx1 but positive for stx2a. High concentrations of EHEC were detected in 11 (5.5%) of the steers at least once over the sampling period. These results indicate that in addition to O157, non-O157 EHEC are transiently present in high concentrations in the rectoanal mucosal region of cattle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.