Abstract

Coastal waters comprise only about 15% of the world's ocean area, yet account for nearly half of its primary and secondary production ( Wollast 1991). This disparity can in part be traced to anthropogenic nutrient, specifically nitrogen (N), loading. Regionally, N-sensitive coastal waters are experiencing unprecedented nutrient-driven eutophication, deteriorating water quality (i.e. hypoxia, anoxia, toxicity), habitat loss and declines in desirable fish stocks and yields. In most coastal regions externally-supplied “new” nutrient inputs are growing, diversifying and changing as a result of urbanization, industrial and agricultural development. In some cases (e.g. Eastern Europe), declining economic condition shave led to a reversal of this scenario. A need exists to identify key nutrient sources (and changes therein) supporting eutrophication and its socio-economic consequences. While we are addressing and managing terrestrial (i.e. point and non-point source runoff) “new” nutrient inputs, key “out of sight out of mind” anthropogenic nutrient sources and their effects on eutrophication remain poorly understood and managed. These include atmospheric deposition and groundwater, which can account for as much as half the “new” N entering North American (U.S. Atlantic East Coast) and European (Baltic Sea) coastal waters. Here, I will examine these emerging nutrient sources and their roles in shallow coastal biogeochemical and trophodynamics alterations. Technological and conceptual tools and approaches aimed at improving our functional understanding of these and other “new” nutrient-eutrophication interactions are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call