Abstract
Using the frequency of keywords is a classic approach in the formal analysis of text, but has the drawback of glossing over the relationality of word meanings. Word embedding models overcome this problem by constructing a standardized and continuous “meaning space” where words are assigned a location based on relations of similarity to other words depending on how they are used in natural language samples. We show how word embeddings are commensurate with prevailing theories of meaning in sociology and can be put to the task of interpretation via two kinds of navigation. First, one can hold terms constant and measure how the embedding space moves around them—much like astronomers measured the changing of celestial bodies with the seasons. Second, one can also hold the embedding space constant and see how documents or authors move relative to it—just as ships use the stars on a given night to determine their location. Using the empirical case of immigration discourse in the United States, we demonstrate the merits of these two broad strategies for advancing important topics in cultural theory, including social marking, media fields, echo chambers, and cultural diffusion and change more broadly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.