Abstract
In this study, three 1.2-L aerobic granular sludge sequencing batch reactors (AGS-SBRs) were used to cultivate nitrifying and nitrifying-denitrifying granules (w/supplemental carbon) and investigate sidestream treatment of synthetic-centrate and real-centrate samples from Ashbridges Bay Treatment Plant (ABTP) in Toronto, Ontario, Canada. Results showed that although the cultivation of distinct granules was not observed in the nitrifying reactors, sludge volume index (SVI30) values achieved while treating real and synthetic centrate were 72 ± 12 mL/g and 59 ± 11 mL/g (after day 14), respectively. Ammonia-nitrogen (NH3-N) removal in the nitrifying SBRs were 93 ± 19% and 94 ± 16% for real and synthetic centrate, respectively. Granules with a distinct round structure were successfully formed in the nitrifying-denitrifying SBR, resulting in an SVI30 of 52 ± 23 mL/g. NH3-N, chemical oxygen demand (COD) and phosphorus (P) removal in the nitrifying-denitrifying SBR were 92 ± 9%, 94 ± 5%, and 81 ± 14% (7th to 114th day), respectively with a low nitrite (NO2-N) and nitrate (NO3-N) concentration in the effluent indicating simultaneous nitrification-denitrification (SND) activity. High nutrient removal efficiencies via the nitrification and SND pathways shows that AGS technology is a viable process for treating sidestreams generated in a WWTP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.