Abstract

This study investigated Chlorella's capacity to treat cheese whey (CW) effluent and produce a high-nutritional value biomass, by using a systematic sequential experimental design. Physicochemical analysis of CW revealed its high pollution load, characterized by elevated levels of lactose, phosphorus, and nitrogen, as well as high turbidity due to the presence of whey solids. Screening experiments demonstrated that trace mineral addition and continuous air supply are essential factors for Chlorella biomass production in CW (>800 mg·mL−1). Furthermore, whey solids did not hinder Chlorella growth, with notable biomass production observed even in undiluted CW, demonstrating this microalga's ability to adapt metabolically to the complex environment. Laboratory-scale photobioreactor experiments confirmed Chlorella's ability to produce biomass in CW, outperforming controls (>800 mg·mL−1). Bioremediation potential assessment exhibited significant reductions in organic pollutants (>14 g·L−1 COD), nitrogen (>400 mg·L−1), phosphorus (>140 mg·L−1) and sodium (>650 mg·L−1). CW solids were also removed with Chlorella harvesting (>99 %). Harvested algal biomass was enriched with proteins (>40 g·100 g−1), polyunsaturated fatty acids (>9 % TFA) and pigments, offering potential applications in nutraceutical and pharmaceutical industries. Overall, this study highlights Chlorella's efficacy in CW treatment and biomass valorization, offering a sustainable solution for dairy wastewater management while producing valuable resources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.