Abstract

Light fraction of organic matter is a source of nutrients for plants and a substrate for microbes, while total organic matter is critical for optimum physical conditions and retention of nutrients and other chemicals in soil. The objective of this study was to evaluate the effects of cultivation and grassland type on light fraction and total C and N in a Dark Brown Chernozemic soil. Three paired-sets of soil samples, in five replications, were collected from three cultivated field areas under annual crops [mostly wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.)] and from three adjacent grassland areas. The three sets were a 30-yr-old bromegrass (Bromus inermis Leyss.)/alfalfa (Medicago sativa L.) dominated stand cut annually for hay (Lm) and cultivated area 1 (Ct1), an unbroken native grass stand having no vegetation removed (Ng) and cultivated area 2 (Ct2) and a bromegrass/crested wheatgrass (A gropyron cristatum L. Gaertn.) dominated stand on a land reverted to grassland 60 yr ago having no vegetation removed (Og) and cultivated area 3 (Ct3). Soil samples from the 0- to 5-cm, 5- to 10-cm, 10- to 15-cm, 15- to 20-cm and 20- to 30-cm depths were taken using a 4-cm-diameter coring tube sampler. Total organic C (TOC), total N (TN), light fraction organic C (LFOC) and light fraction N (LFN) in soil were determined and the equivalent mass technique was used to calculate their masses in different soil layers. Total mass (for all soil layers) was less in the cultivated areas compared to the grassland areas by 31 to 43% for TOC, by 84 to 85% for LFOC, by 15 to 34% for TN and by 82 to 84% for LFN. The effect of cultivation was much greater in the surface 5-cm depth compared to deeper soil layers. The proportions of LFOC in TOC and LFN in TN as well as the TOC:TN ratios were lower in the cultivated areas than in the grassland areas, whereas the LFOC:LFN ratios were similar in cultivated and grassland areas. The light fractions of C and N were thus more responsive to change from grassland to cultivation of annual crops compared to the total C and N. Within the grassland areas, the mass of TOC and TN in most of the soil layers was greater in the Lm compared to both Ng and Og areas, while the LFOC and LFN did not show the effect of grassland type. The differences in the mass of both total and light fraction C and N in the cultivated areas were small and generally not significant. The findings suggest that including legume in grassland stands can sequester more organic C and N into the soil even when used for hay production. Key words: Cultivated land, light fraction C and N, native grassland, total organic C and N

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call