Abstract

Enriched cultures of microorganisms are an essential step in the production of inoculum of these organisms for biotechnology and bioengineering. The potential application of methanotrophic microorganisms for removal of methane produced from landfills and coal mines as well as biodegradation of toxic compounds has been widely studied. Therefore, searching for new sources of methanotrophs can contribute to increasing the possibilities of biotechnology and bioengineering.Enrichment cultures of endophytic methanotrophs from Sphagnum sp. were initiated in NMS medium, a most widely used medium for cultivation of methanotrophic bacteria from various environments proposed in 1970 by Whittenbury. Incubation was carried out at 10, 20, 30, and 37°C with vigorous shaking on a shaker (180 rpm). The source of carbon and energy for endophytes were methane at the concentration range between 1-20%.It appeared that the consortium of endophytic bacteria grew only at the temperature of 20 and 30°C. During the culture of endophytes, the measurements of gas concentration showed a steady loss of methane and oxygen, as well as accumulation of carbon dioxide as a CH4 oxidation product.The use of FISH has made characterization of endophytic consortia possible. It turned out that the population of endophytes consists of type I and II methanotrophs as well as associated non-methanotrophic bacteria.Furthermore, we determined the potential of the examined bacteria for methane oxidation, which ranged up to 4,7 μMCH4 per ml of the population of endophytes per day.

Highlights

  • The history of the use of microorganisms by man is as old as the human civilization itself

  • The pictures were taken with a Digital Sight camera (Nikon) and processed using software program. Culture growth It appeared that the consortium of endophytic bacteria grew at the temperature of 20 and 30°C, but not at 10°C and 37°C (Figure 1)

  • Enriched cultures of microorganisms are an essential step in the production of inoculum of different organisms for biotechnology and bioengineering

Read more

Summary

Introduction

The history of the use of microorganisms by man is as old as the human civilization itself. Progress can be seen in the use of microorganisms for environmental biotechnology, namely removal of greenhouse gases from various sites (landfills, coal mines), biodegradation of toxic compounds, wastewater treatment etc. A unique and fascinating group of microorganisms are methanotrophic bacteria, which were discovered over a century ago and yet are still of great interest. Aerobic methanotrophic bacteria, which use methane as the sole source of carbon and energy, act as a major methane sink. Methanotrophic bacteria have been studied in soils, deserts, landfills, tundra, wetlands, rice paddies, sediments, lakes, and marine environments (Hanson and Hanson 1996), as well as in the atmosphere (Santl-Temkiv et al 2013) and coal mines (Stępniewska et al 2006)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.