Abstract

In drupe fruits, in addition to fruit size, the proportions of mesocarp and endocarp tissues are critical objectives for fruit quality, crop production and management. The olive fruit is a typical drupe, with cultivars which show a wide range in both fruit size and the proportions of mesocarp and endocarp. Characterizing the roles of tissue and cellular processes in producing genetically based fruit size variability is necessary for crop improvement, as well as deepening our understanding of fruit developmental physiology. This study used microscope image analysis to evaluate cell number and size, the growth of mesocarp and endocarp tissues, and their developmental timing in producing fruit size among six olive cultivars with a large range of fruit size. We found that cultivar mesocarp and endocarp size increased linearly with fruit size, with larger sizes favoring an increasingly greater mesocarp/endocarp ratio. Within the mesocarp, cultivar-based fruit size related directly to cell number and was established soon after bloom by cell division rate. In spite of different cell division rates, all cultivars showed similar timing of cell division activity, with the majority of cells produced in the two months after bloom but, surprisingly, a substantial number of cells formed during the following 6 months. Cell expansion was high throughout fruit growth and an important factor in achieving final fruit size, but cell size did not differ among cultivars at any time. We can conclude that fruit size differences among olive cultivars are due at the tissue level to both mesocarp and endocarp sizes and at the cellular level to cell division throughout fruit growth. Furthermore, since cell size is consistent among cultivars in spite of variable cell division, it is likely that cultivar differences in cell expansion accompany those in cell division.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call