Abstract

DNA topoisomerase I (TOP1)-DNA covalent complexes are the initial lesions produced by antitumor camptothecins (CPTs). The TOP1-directed drugs stimulate degradation of TOP1 via the ubiquitin-proteasome pathway. We found that proteasome inhibition prevents degradation of DNA-bound TOP1 and sustains high levels of covalent complexes, thus enhancing CPT-induced cell death. Consistent with this, increased degradation of TOP1-DNA covalent complexes was seen in acquired CPT-resistant cells. We found that the resistant cells showed elevated expressions of Cul3, a member of the cullin family of E3 ubiquitin ligases. The reduction in Cul3 expression by small interfering RNA decreased degradation of TOP1-DNA covalent complexes. Conversely, Cul3 overexpression by stable transfection promoted covalent complex degradation and reduced CPT-induced cell death without affecting basal TOP1 expression levels. These results indicate that Cul3, by promoting proteasomal degradation of TOP1-DNA covalent complexes, becomes an important regulator for cellular CPT sensitivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.