Abstract

Stimulating or augmenting the innate immune response of insect vectors has been shown to impede or disrupt the development and transmission of eukaryotic pathogens; however, the majority of such studies have utilized model systems and not natural parasite-vector systems. The Culex pipiens complex of mosquitoes functions as a primary urban vector of Wuchereria bancrofti, a causative agent of lymphatic filariasis. To test the effects of immune activation on this vector-parasite interaction, Culex pipiens pipiens from the filariasis-endemic Nile Delta were subjected to bacteria inoculation and subsequently fed a blood meal containing W. bancrofti. No difference was seen between parasite development in these mosquitoes as compared to non-inoculated controls. A set of expressed sequence tags from blood-fed midgut and bacteria-inoculated Cx. p. pipiens reveals transcripts for the immune peptides cecropin, gambicin and defensin--all of which have been reported to have antiparasitic effects. Sequences and transcriptional profiles for these peptides are reported. The discrepancy between these results and those reported for the model parasite, Brugia malayi, in the mosquito Aedes aegypti are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.