Abstract
Hereditary spastic paraplegias (HSPs) are degenerative motor neuron diseases characterized by progressive spasticity and weakness in the lower limbs. The most common form of HSP is due to SPG4 gene haploinsufficiency. SPG4 encodes the microtubule severing enzyme spastin. Although, there is no cure for SPG4-HSP, strategies to induce a spastin recovery are emerging as promising therapeutic approaches. Spastin protein levels are regulated by poly-ubiquitination and proteasomal-mediated degradation, in a neddylation-dependent manner. However, the molecular players involved in this regulation are unknown. Here, we show that the Cullin-4-RING E3 ubiquitin ligase complex (CRL4) regulates spastin stability. Inhibition of CRL4 increases spastin levels by preventing its poly-ubiquitination and subsequent degradation in spastin-proficient and in patient derived SPG4 haploinsufficient cells. To evaluate the role of CRL4 complex in spastin regulation in vivo, we developed a Drosophila melanogaster model of SPG4 haploinsufficiency which show alterations of synapse morphology and locomotor activity, recapitulating phenotypical defects observed in patients. Downregulation of the CRL4 complex, highly conserved in Drosophila, rescues spastin levels and the phenotypical defects observed in flies. As a proof of concept of possible pharmacological treatments, we demonstrate a recovery of spastin levels and amelioration of the SPG4-HSP-associated defects both in the fly model and in patient-derived cells by chemical inactivation of the CRL4 complex with NSC1892. Taken together, these findings show that CRL4 contributes to spastin stability regulation and that it is possible to induce spastin recovery and rescue of SPG4-HSP defects by blocking the CRL4-mediated spastin degradation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.