Abstract
Objective: This paper aims at predicting the cuisine based on the ingredients using tree boosting algorithm. Methods/ Analysis: Text mining is important tool for data mining in Ecommerce websites. Ecommerce business is growing with significant rate both in Business-to-Business (B2B) and Business to Customer (B2C) categories. The machine learning based models and prediction method are used in real world ecommerce data to increase the revenue and study customer behavior. Many online cooking and recipe sharing websites have ardent to evolution of recipe recommendation system. In this paper, we describe a scalable end to end tree boosting system algorithms to predict cuisine based on the ingredients and also explored different data analysis and explained about the dataset types and their performances. Novelty/ Improvement: An accuracy of about 80% is obtained for cuisine prediction using XG-Boosting algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.