Abstract
While Graphics Processing Units (GPUs) show high performance for problems with regular structures, they do not perform well for irregular tasks due to the mismatches between irregular problem structures and SIMD-like GPU architectures. In this paper, we introduce a new library, CUIRRE, for improving performance of irregular applications on GPUs. CUIRRE reduces the load imbalance of GPU threads resulting from irregular loop structures. In addition, CUIRRE can characterize irregular applications for their irregularity, thread granularity and GPU utilization. We employ this library to characterize and optimize both synthetic and real-world applications. The experimental results show that a 1.63× on average and up to 2.76× performance improvement can be achieved with the centralized task pool approach in the library at a 4.57% average overhead with static loading ratios. To avoid the cost of exhaustive searches of loading ratios, an adaptive loading ratio method is proposed to derive appropriate loading ratios for different inputs automatically at runtime. Our task pool approach outperforms other load balancing schemes such as the task stealing method and the persistent threads method. The CUIRRE library can easily be applied on many other irregular problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.