Abstract

In this paper, we demonstrate, for the first time, the manufacture of a CuInSe2 thin film whose absorber layer is coated using an electrostatic spray deposition (ESD) technique; its complete transformation into a working device with measured conversion efficiency is presented. ESD is superior to pneumatic spraying because it produces nano-scaled, self-dispersive (non-agglomerating), highly wettable (electrowetting) and adhesive droplets to yield a uniform coating on a substrate. Furthermore, ESD's extremely low material consumption rate holds promises for practical use in the solar cell industry. Copper and indium salts are added to various solvents, which are electrostatically sprayed onto a molybdenum-coated soda-lime glass substrate. The effect of substrate temperature on the thin film characteristics is examined. Our cell is completed by adding CdS and ZnO layers onto the CuInSe2 absorber layer. Light illuminated current-density voltage (J-V) characteristics demonstrate a power conversion efficiency of η = 1.75% ± 0.09 with an open-circuit voltage of VOC = 0.23 V, a short-circuit current density of JSC = 21.72 mA/cm2, and fill factor of FF = 0.34.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.