Abstract
A novel CuInS2/TiO2 (CIS-TO) heterojunction which displayed two different transfer pathways of photogeneration carries under UV–vis and Vis light irradiation was fabricated through a facile in-situ growth method. Under vis-light (λ ≥ 420 nm) excitation, 97.37% RhB (10 mg/L) was photodegraded with 20 mg of 1% CIS-TO photocatalyst within 90 min, and the degradation constant could up to 0.0415 min−1, which was about 8.28 times to pure TiO2 (0.00501 min−1) and the typical heterojunction was formed between CuInS2 and TiO2 to provide the photo-electrons transfer channel. Under UV–vis light irradiation, a Z-scheme heterojunction was formed to provide another highly effective electron transfer channel for hydrogen production and the hydrogen production rate could reach 785.4 μmol g−1 h−1 with 1% CIS-TO photocatalyst, which showed nearly 1.68 times than that of pure TiO2. The enhanced photocatalytic activity could be attributed to the synergistic effect of the sensitization and narrow band gap of CuInS2 which could effectively broaden the spectral response range, enhance the photon utilization and inhibit the recombination of photogenerated electrons and holes. Additionally, the high stability of the material was illustrated by the cycle experiments of photodegradation and hydrogen production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.