Abstract

Amorphous (a-) In2O3-based front contact layers composed of transparent conducting oxide (TCO) and transparent oxide semiconductor (TOS) layers were proved to be effective in enhancing the short-circuit current density (Jsc) of Cu(In,Ga)Se2 (CIGS) solar cells with a glass/Mo/CIGS/CdS/TOS/TCO structure, while maintaining high fill factor (FF) and open-circuit voltage (Voc). An n-type a-In-Ga-Zn-O layer was introduced between the CdS and TCO layers. Unlike unintentionally doped ZnO broadly used as TOS layers in CIGS solar cells, the grain-boundary(GB)-free amorphous structure of the a-In-Ga-Zn-O layers allowed high electron mobility with superior control over the carrier density (N). High FF and Voc values were achieved in solar cells containing a-In-Ga-Zn-O layers with N values broadly ranging from 2 × 1015 to 3 × 1018 cm-3. The decrease in FF and Voc produced by the electronic inhomogeneity of solar cells was mitigated by controlling the series resistance within the TOS layer of CIGS solar cells. In addition, a-In2O3:H and a-In-Zn-O layers exhibited higher electron mobilities than the ZnO:Al layers conventionally used as TCO layers in CIGS solar cells. The In2O3-based layers exhibited lower free carrier absorption while maintaining similar sheet resistance than ZnO:Al. The TCO and TOS materials and their combinations did not significantly change the Voc of the CIGS solar cells and the mini-modules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call