Abstract
In recent years, studies have found that the hierarchical neural network with LSTM network has higher accuracy than another feature engineering. Therefore, this paper first tries to build a multi-stage blood pressure estimation model through VGG19 and LSTM network. Based on the time node of the R wave peak in the QRS waveform in ECG, VGG19 is used to extract various higher-dimensional and rich life characteristics in the PPG signal segment by heartbeat as the unit and focus on processing the dynamics of SBP and DBP Correlation, finally use the LSTM model to extract the time dependence of the vital signs. Results: Experiments show that compared with similar multi-stage models, this model has higher accuracy. The performance of this method meets the Advancement of Medical Instrumentation (AAMI) standard and reaches the A level of the British Hypertension Society (BHS) standard. The average error and standard deviation of the estimated value of SBP were 1.7350 4.9606 mmHg, and the average error and standard deviation of the estimated value of DBP were 0.7839 2.7700 mmHg, respectively.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.