Abstract

Accurate measurement and modeling of the snowpack energy balance are critical to understanding the terrestrial water cycle. Most of the water resources in the western US come from snowmelt, yet statistical runoff models that rely on the historical record are becoming less reliable because of a changing climate. For physically based snow melt models that do not depend on past conditions, ground based measurements of the energy balance components are imperative for verification. For this purpose, the US Army Corps of Engineers Cold Regions Research and Engineering Laboratory (CRREL) and the University of California, Santa Barbara (UCSB) established the “CUES” snow study site (CRREL/UCSB Energy Site, http://www.snow.ucsb.edu/) at 2940 m elevation on Mammoth Mountain, California. We describe CUES, provide an overview of research, share our experience with scientific measurements, and encourage future collaborative research. Snow measurements began near the current CUES site for ski area operations in 1969. In the 1970s, researchers began taking scientific measurements. Today, CUES benefits from year round gondola access and a fiber optic internet connection. Data loggers and computers automatically record and store over 100 measurements from more than 50 instruments each minute. CUES is one of only five high altitude mountain sites in the Western US where a full suite of energy balance components are measured. In addition to measuring snow on the ground at multiple locations, extensive radiometric and meteorological measurements are recorded. Some of the more novel measurements include scans by an automated terrestrial LiDAR, passive and active microwave imaging of snow stratigraphy, microscopic imaging of snow grains, snowflake imaging with a multi-angle camera, fluxes from upward and downward looking radiometers, snow water equivalent from different types of snow pillows, snowmelt from lysimeters, and concentration of impurities in the snowpack. We give an example of terrain-corrected snow albedo measurements compared to several models and of sublimation measured from lysimeter and snow pillow melt. We conclude with some thoughts on the future of CUES.

Highlights

  • The US Army Corps of Engineers Cold Regions Research and Engineering Laboratory (CRREL) and the University of California, Santa Barbara (UCSB) established a snow study site (CRREL-UCSB Energy Site, CRREL/UCSB Energy Site (CUES)) midway up Mammoth Mountain, California USA (37.643◦N, 119.029◦W, Figures 1, 2)

  • Uplooking radiometers are mounted on a 2 m mast above CUES platform; Downlooking radiometers are on a remote boom that extends over the snow surface

  • We show how radiometric measurements and snow albedo measured at CUES compare to several models

Read more

Summary

Introduction

The US Army Corps of Engineers Cold Regions Research and Engineering Laboratory (CRREL) and the University of California, Santa Barbara (UCSB) established a snow study site (CRREL-UCSB Energy Site, CUES) midway up Mammoth Mountain, California USA (37.643◦N, 119.029◦W, Figures 1, 2). Mammoth Mountain is a silica dome cluster (Hildreth, 2004) with a base elevation of 2424 m and a summit of 3369 m. It is one of North America’s most visited ski areas and its gondola operates year-round. CUES is located at 2940 m, just below the tree line and is one of only five full energy balance sites in the Western US (Bales et al, 2006); the others are Reynolds Creek, ID; Niwot Ridge, CO; Senator Beck basin, CO; and Mt. Bigelow, AZ. Compared to these sites, CUES is unique for its combination of location, altitude, and ease of access.

History of CUES
Soil moisture or conductance
Snow temperature
Snow Albedo Case Study
Sublimation Case Study
Future of Cues
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call