Abstract

In humans, there is a strong beta (15-30 Hz) event-related desynchronization (ERD) that begins before movement, which has been tentatively linked to motor planning operations. The dynamics of this response are strongly modulated by whether a pending movement is cued and the inherent parameters of the cue. However, previous studies have focused on the information content of cues and not on parameters such as the timing of the cue relative to other events. Variations in such timing are critical, as they directly impact the amount of time that participants have to plan pending movements. In this study, participants performed finger-tapping sequences during magnetoencephalography, and we manipulated the amount of time (i.e., "long" vs. "short") between the presentation of the to-be-executed sequence and the cue to initiate the sequence. We found that the beta ERD was stronger immediately after the cue to move in the contralateral postcentral gyrus and bilateral parietal cortices during the short compared with long planning time condition. During movement execution, the beta ERD was stronger in the premotor cortex and the SMA in the short relative to long condition. Finally, peak latency in the SMA significantly correlated with RT, such that the closer the peak beta ERD was to the cue to move, the quicker the participant responded. The results of this study establish that peri-movement beta ERD activity across the cortical motor circuit is highly sensitive to cue-related temporal factors, with a direct link to motor performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call