Abstract
Biological sequence comparison is a very important operation in Bioinformatics. Even though there do exist exact methods to compare biological sequences, these methods are often neglected due to their quadratic time and space complexity. In order to accelerate these methods, many GPU algorithms were proposed in the literature. Nevertheless, all of them restrict the size of the smallest sequence in such a way that Megabase genome comparison is prevented. In this paper, we propose and evaluate CUDAlign, a GPU algorithm that is able to compare Megabase biological sequences with an exact Smith-Waterman affine gap variant. CUDAlign was implemented in CUDA and tested in two GPU boards, separately. For real sequences whose size range from 1MBP (Megabase Pairs) to 47MBP, a close to uniform GCUPS (Giga Cells Updates per Second) was obtained, showing the potential scalability of our approach. Also, CUDAlign was able to compare the human chromosome 21 and the chimpanzee chromosome 22. This operation took 21 hours on GeForce GTX 280, resulting in a peak performance of 20.375 GCUPS. As far as we know, this is the first time such huge chromosomes are compared with an exact method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.